ASA 124th Meeting New Orleans 1992 October

3pSA12. Toward local effective parameter theories using multiresolution decomposition.

B. Z. Steinberg

Dept. of Interdisciplinary Studies, Faculty of Eng., Tel-Aviv Univ., Tel-Aviv 69978, Israel

John J. McCoy

The Catholic Univ. of America, Washington, DC 20064

Using the recently developed theory of multiresolution decomposition, a formulation that governs the response of a linear dynamical system with nonstationary microscale heterogeneities is reduced to two coupled formulations, one governing the response smoothed on an arbitrary chosen reference scale with the response fine details as forcing, and one governing the response details with the response smooth as a forcing. By substituting the formal solution of the latter in the former, a new framework, specifically tuned to macroscale variations of the response, in which the effects of the nonstationary microscale heterogeneity are described via a macroscale-effective material operator, is obtained. Localization of across-scale couplings, as well as the dependence of the response smooth and the effective material operator on the microscale and macroscale geometries, are investigated via general asymptotic considerations and specific numerical examples. The latter concerns the response of a fluid loaded elastic plate with nonstationary microscale mass heterogeneity.