ASA 130th Meeting - St. Louis, MO - 1995 Nov 27 .. Dec 01

1aAO2. Internal solitons in the ocean.

John R. Apel

Johns Hopkins Univ., Appl. Phys. Lab., Laurel, MD 20726

Lev A. Ostrovsky

Univ. of Colorado, Boulder, CO 80303

Yuri A. Stepanyants

Inst. of Appl. Phys., Nizhny Novgorod 603600, Russia

Internal waves (IW) are among the important factors affecting sound propagation in the ocean. A special role may be played by solitary IWs because of their spatial localization and high magnitudes. Here, nonlinear IWs are discussed (a) from the standpoint of soliton theory and (b) from the viewpoint of experimental measurements. First, basic theoretical models for solitary IWs in the oceanare described, and various analytical solutions are treated, commencing with the well-known Korteweg--de Vries equation and its important generalizations including effects of rotation, cylindrical divergence, eddy viscosity, shear flows and instabilities, and turbulence. Experimental evidence for the existence of solitons in the upper ocean is presented both for shallow and deep sea regions. The data include radar and optical images and in situ measurements of waveforms, propagation speeds, and dispersion characteristics. It is suggested that internal solitons in the ocean are ubiquitous and are generated primarily by tidal flows over continental shelf breaks, banks, and similar bottom topographic features. [Work supported by ONR, DOD, ISF.]