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 Introduction 

 A basic role of the auditory system in all mammals is 
to identify sounds, selectively activate neural systems 
that focus attention to sounds, and generate suitable mo-
tor responses. In the first auditory relay center in the 
brain, the cochlear nuclear complex, information carried 
by the fibers of the cochlear nerve is conveyed to a num-
ber of different neuronal populations that, in turn, give 
rise to a number of parallel ascending pathways that proj-
ect to a variety of brainstem targets. Projections from 
these targets as well as direct projections from the co-
chlear nuclei ultimately converge on the auditory mid-
brain, the inferior colliculus (IC)  [1–6] . In contrast to the 
role of the superior colliculus within the visual system, 
the IC is the principal source of input to the auditory thal-
amus  [7] . The IC probably also represents a major output 
to premotor pathways that initiate or regulate sound-
evoked motor behavior  [2] . 

 Whereas most sensory systems have only two relay 
stations between the periphery and cerebral cortex, there 
is a minimum of three relays in the auditory system with 
several stages of convergence and divergence and at least 
seven levels of crossings from one side to the other  [7] . 
Thus, the auditory system is unique among sensory sys-
tems with its highly complex network of pathways in the 
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 Abstract 
 A major goal in auditory research is to understand complete-
ly how we hear, the physiology of the human auditory sys-
tem and to identify the causes and treatments for hearing 
impairment. By understanding all the elements of the ‘audi-
tory scaffold’ we will begin to achieve these important goals. 
The inferior colliculus (IC) occupies a strategic position in the 
central auditory system and may be considered a central 
hub or an interface between the lower auditory pathway, the 
auditory cortex and motor systems. The IC is the site for ter-
mination of the ascending fibers of the lateral lemniscus and 
also receives a heavy innervation from the auditory cortex. 
Furthermore, the IC receives crossed projections from its 
counterpart and possesses a dense network of local connec-
tions. Thus, the IC is the main site of auditory integration at 
the midbrain level. Anatomical and physiological experi-
ments demonstrate that the IC is involved in a great diver-
sity of functional roles in the auditory system, and that most 
of the interesting auditory features might already be extract-
ed from incoming sounds by this midbrain nucleus. 
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lower brainstem and a significant amount of processing 
accomplished in the IC, prior to the level of the thalamus. 
An important question is why an obligatory relay exists 
in the auditory midbrain. One intriguing explanation is 
that divergence at the early stages of auditory processing 
results in several distinct acoustic maps in the brainstem. 
The midbrain relay is required to enable their fusion into 
a single, integrated map at the level of the IC prior to relay 
to higher centers and for descending modulation from 
the neocortex. 

 The IC is not only the main site of termination of the 
ascending fibers of the lateral lemniscus but also receives 
a heavy innervation from the auditory cortex (AC)  [8] . 
Furthermore, the IC receives crossed projections from 
the contralateral IC  [9]  and possesses a dense network of 
intrinsic connections  [9–12] . Thus, the IC occupies a stra-
tegic position in the central auditory system and may be 
considered an interface between the lower auditory path-
way and the AC and motor systems  [2] . In this review, our 
current understanding of the structure and function of 
the mammalian IC will be discussed. 

 A General View of the Anatomy of the IC 

 The IC is visible on the dorsal surface of the midbrain 
immediately caudal to the superior colliculus. In the cat, 
it is nearly spherical while it is ellipsoid in the rat. The IC 
was originally subdivided using classical neuroanatomi-
cal methods. Ramón y Cajal  [13, 14]  identified three main 
subdivisions in Golgi-impregnated material in a variety 
of mammals:  the nucleus, the internuclear cortex and the 
lateral cortex . This simple parcellation ( fig. 1 ) has been 
preserved in studies for the past 25 years with some mi-
nor modifications  [9, 10, 15–18] . Thus, the IC is made of 
a central nucleus (CNIC), a laterally and rostrally placed 
external cortex (ECIC) and a dorsal cortex (DCIC) that 
covers the CNIC dorsally and caudally. The lateral and 
rostral parts of the ECIC contain several distinct cell 
types and, for this reason, Malmierca  [10]  defined them 
as two separate cortices, the lateral cortex of the IC (LCIC, 
cf.  [3, 19] ) and the rostral cortex of the IC (RCIC, also re-
ferred to as the intercollicular zone, cf.  [20] ). Molecular 
mapping techniques based on calcium-binding proteins 
also distinguish the CNIC from the cortices. Thus, par-
valbumin has a higher concentration in the CNIC while 
calbindin and calretinin show a higher concentration in 
the DCIC [reviewed in ref.  21 ]. The metabolic marker cy-
tochrome oxidase also delineates the CNIC [reviewed in 
ref.  18, 21 ]. 

 In the rat, the ECIC appears to occupy a relatively larg-
er proportion of the IC than in the cat  [16, 17, 19] . In the 
mustache bat, the ‘dorsoposterior division’ of the CNIC 
has an expanded representation for the high tonal fre-
quencies used for echolocation  [22] . 

 The CNIC is defined by the presence of  laminae  ( fig. 2 ),  
 distinguishable in Golgi material as a parallel orientation 
of afferent lemniscal fibers and neurons with flattened 
dendritic arbors, usually referred to as ‘fibrodendritic 
laminae’  [23] . The characteristic laminar organization of 
the CNIC has been observed in all species studied so far 
 [21] . The laminar organization of the CNIC constitutes 
the structural basis for its tonotopic map  [24–26] . 

 Neuron Types of the IC Subdivisions 

 The Central Nucleus 
 The CNIC possesses two main types of neurons that 

were first defined in the cat as disk-shaped and stellate 
neurons, which have flattened dendritic arbors and den-
dritic arbors that often transverse the laminae, respec-
tively  [12, 27] . In the rat, corresponding types have been 
referred to as flat (F) and less flat (LF) neurons using 
computer-assisted 3D reconstructions of Golgi-impreg-
nated material  [17]  ( fig. 1,   2 ). The F neurons clearly con-
form to the definition of disk-shaped neurons described 
in the cat  [27] , but the correspondence between the LF 
and stellate is less clear. 

 F and LF neurons ( fig. 2 ) differ in dendritic arbor 
thickness, dendritic branching pattern, location and ori-
entation with regard to the laminae. The thickness of the 
dendritic arbor of the F neurons is 50  � m while that of 
LF neurons is 100  � m, with the latter being less dense and 
branched than the  former. The dendritic arbors of most 
F and LF neurons are elongated and located in parallel 
with the ventrolaterally to dorsomedially oriented long 
axis of the laminae. The F neurons are strictly parallel 
and form laminae mostly one cell thick ( � 40–70  � m) 
 [16] . The LF neurons lie roughly parallel to the F neurons 
 [17]  and populate interlaminar compartments that sepa-
rate the laminae defined by the F neurons. The orienta-
tion of the F neurons (i.e. laminae) is almost horizontal 
in the dorsolateral part of the nucleus, but a gradual shift 
takes place so that they become more vertical in the me-
dial part  [17] . Similarly, a gradient in cell size and packing 
density of cell bodies as seen in Nissl-stained sections also 
prevails with the smallest cell bodies and highest packing 
density in the dorsolateral (low frequency) area (fig. 3G 
from Faye-Lund and Osen  [16] ). 
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  Fig. 1.   a    Computer-assisted 3D reconstruction of 35 neurons from the low- and high-frequency regions of the CNIC 
maintaining their mutual relationship. Camera lucida drawings of two F ( b ) and LF neurons ( c ). Redrawn from 
Malmierca et al.  [65] . 
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 Thus far, I have described the neuronal types in the IC 
based primarily on their dendritic morphology, as F and 
LF. However, this dual classification does not correlate 
entirely with some of the functional properties observed 
 [21] . IC neurons also vary in their neurochemistry, pro-
jections and their electrophysiological properties. The 
neurochemistry of the F and LF neurons has been studied 
in the rat  [28]  and cat  [29] . In the cat, about 20% of the 
cells are  � -aminobutyric acid (GABA)ergic while in rat 
the proportion may be slightly larger (up to 25%) accord-

ing to Merchán et al.  [28] . It seems that GABAergic cells 
may have either F or LF morphology  [28] . In a recent 
study using whole-cell patch-clamp techniques in CNIC 
neurons in brain slices of rats, Sivaramakrishnan and
Oliver  [30]  have characterized the potassium currents 
present and correlated them with the firing patterns ob-
served by Peruzzi et al.  [31] . Their study demonstrated 
the presence of six distinct physiological cell types: sus-
tained regular, onset, pause build, rebound regular, re-
bound adapting and rebound transient. Each of these six 

  Fig. 2.  Diagram of the laminar and inter-
laminar compartments of the CNIC seen 
 en face  ( a ) and  on edge  ( b ). Redrawn from 
Malmierca et al.  [65] . 
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types possesses a firing pattern caused by unique potas-
sium currents and a set of other parameters ( fig. 3 ). Be-
cause of differences in ionic currents, some neurons in 
the CNIC are likely to integrate their temporal and inten-
sity inputs while others may act as simple relays. There is 
apparently no simple correlation between the anatomy 
and physiology of the F and LF cells  [31] . Thus, while the 
F and LF morphology is clearly related to the mainte-
nance of tonotopic organization, there may be several 
types of F and LF cells with complex functional roles. 

 The Lateral Cortex 
 The definition of the LCIC varies among species and 

the homology in rat and cat is just beginning to be clear 
 [19] . Three layers are defined in the lateral part  [10, 16] . 
Layer 1 is a continuation of the fibrodendritic capsule of 
the DCIC. Layer 2 is composed of small and medium-
sized neurons, partly aggregated in dense clusters in 
 myelin-rich neuropil. The aggregates are also rich in par-
valbumin, cytochrome oxidase, nicotinamide adenine 
dinucleotide phosphate-diaphorase, and acetylcholines-
terase, but they are immunonegative for glycine, calbin-
din, serotonin and choline acetyltransferase  [32, 33] . As-
cending auditory input to layer 2 is sparse, but the dorsal 
column nuclei and spinal trigeminal nucleus provide it 
with primary ascending sensory input. Therefore, the ex-
ternal cortex could participate in spatial orientation and 
somatic motor control through its intrinsic and extrinsic 
projections  [33] . Layer 3 constitutes the largest part of the 
ECIC and appears to continue into the non-stratified ros-
tral part (rostral cortex), which is topographically related 
to the fascicles of the commissural fibers. In addition to 
small and medium-sized cells, layer 3 contains large mul-
tipolar cells, especially ventromedially and rostrally. The 
border of the ECIC with the CNIC is indicated by a dis-
tinct shift in dendritic orientation, particularly conspicu-
ous dorsolaterally as seen in caudal transverse sections 
 [10, 16]  where three morphologically distinct neuron 
types (bitufted, pyramidal-like and chandelier neurons) 
have been described  [10] . Similar neurons have been de-
scribed in the mouse. Willard and Ryugo  [34]  described 
large stellate cells with elongated dendritic arbors whose 
main axis is aligned perpendicular to the pial surface. 
Furthermore, computer-assisted 3D reconstructions of 
neurons in this region demonstrated that their dendritic 
arbors are different from those of the F neurons in the 
CNIC in several respects, including their thickness and 
orientation  [10] . Because of this, some authors have hy-
pothesized that the LCIC is compatible with a cortical-
like architecture (i.e. a laminar architecture with distinct 

input-output strata) in conformity with the original de-
scription made by Ramón y Cajal  [13, 14] . This notion is 
supported by McCown and Breese  [35]  in neonatal rats, 
who proposed that the modulation of sensorimotor func-
tion may be modulated by the IC cortices prior to the 
maturation of the cerebral cortex. 

 The Dorsal Cortex 
 The DCIC covers the dorsomedial and caudal aspects 

of the CNIC. In the cat, the dorsomedial part consists of 
four layers and the thinner caudal part is unlayered  [15] . 
The rat possesses only three layers  [16] . The superficial-
most layer (layer 1) is a thin fibrocellular capsule that 
continues with that over the LCIC. It contains scattered, 
small, flattened neurons. The deeper, slightly thicker lay-

  Fig. 3.  The six firing patterns found in the IC after depolarizing 
and hyperpolarizing current pulses.  a–f  The top two traces are
the voltage response to each current pulse (bottom traces). Re-
drawn from Sivaramakrishnan and Oliver  [30]  . 
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er 2 consists of small and medium-sized, mostly multipo-
lar neurons. These two layers together constitute about 
one third the maximum thickness of the DCIC. Layer 3 
contains small and medium-sized cells. There are large 
multipolar neurons at the border with the CNIC that dif-
fer in several respects from the F and LF neurons of the 
CNIC as demonstrated with computer-assisted 3D re-
constructions of Golgi-impregnated neurons  [10] . Layer 
3 also contains elongated neurons located at the border 
between the CNIC and the DCIC whose dendritic arbors 
parallel the orientation of the laminae  [10] ; these may 
represent modified disk-shaped cells and have been re-
ferred to as transitional neurons  [10] . 

 The Rostal Cortex  
 The neurons in the RCIC also differ from those in the 

CNIC and LCIC as they are very large multipolar cells 
 [10, 16, 17] . In addition, small and medium-sized multi-
polar neurons are present in the rostral cortex. 

 Connections of the IC Subdivisions 

 Ascending afferent inputs to the IC arise from lower 
auditory centers and tend to terminate more densely in 
the ventral portions of the IC, whereas the afferent input 
from the AC and commissural input from the contralat-
eral IC terminate more densely in the dorsal portions  [2] . 
Therefore, the ventral portion of the CNIC appears to be 
functionally connected with lower auditory centers, while 
neurons in the DCIC may be more influenced by de-
scending pathways from the AC. However, there is an 
area of overlap between regions receiving the ascending 
and descending inputs at the border of the CNIC and 
DCIC  [36, 37] , so neurons located in this region may re-
ceive a combination of ascending, descending, intrinsic 
and commissural inputs. Altogether, the neuroanatomi-
cal studies suggest the presence of complementary gradi-
ents of innervation by the ascending and descending 
pathways to the IC. These gradients may serve to produce 
functional gradients within a given lamina and such 
overlapping gradients of ascending and descending in-
puts may differ from species to species  [2] . 

 In the following, first a review of the afferent ascend-
ing connections to the different IC subdivisions is given, 
subsequently focusing on its descending connections. Fi-
nally, the functional organization of the efferent connec-
tions (both ascending and descending) as well as that of 
the local and commissural connections within and be-
tween the two colliculi is shown in detail. 

 Afferent (Ascending) Projections ( fig. 4 ) 
 The CNIC receives ascending input from more than 

10 brainstem auditory centers [reviewed in ref.  2, 18 ], 
each of which is unique in structure and function. The 
main pathways arise from the cochlear nuclear complex, 
superior olivary complex (SOC) and nuclei of the lateral 
lemniscus, as demonstrated by retrograde axonal trans-
port of tracers injected into the IC. The projections orig-
inate in the ventral cochlear nucleus (VCN) and dorsal 
cochlear nucleus (DCN) contralaterally, ventral nucleus 
of the lateral lemniscus and medial superior olive (MSO) 
ipsilaterally and the dorsal nucleus of the lateral lemnis-
cus (DNLL) and lateral superior olive (LSO) bilaterally 
 [1–5, 38–41] . In addition to these main projections, some 
species also have a projection from the ipsilateral cochle-
ar nucleus to the low frequency part of the CNIC and a 
bilateral projection from the highest frequency parts of 
the MSO  [38, 39] . Experiments using small injections of 
retrograde tracers injected into the IC demonstrate that 
the afferents are topographically (tonotopically) orga-
nized. Complementary experiments using anterograde 
tracers such as wheat germ agglutinin-conjugated horse-
radish peroxidase or  3 H-leucine injected into the lower 
centers have shown that besides being tonotopically orga-
nized, many of the ascending systems show a non-uni-
form distribution in the CNIC, exhibiting a ‘banded’ pat-
tern, with dense axonal bands about 200  � m thick sepa-
rated by bands of less dense labeling  [21] . Bands formed 
by the projections from the ipsilateral and contralateral 
LSOs are intercalated, rather than overlapping. The band-
ed pattern of bilateral projections to the CNIC from nu-
clei like the LSO and the DNLL may be more distinct on 
one side than on the other side, and the terminal fields of 
the various ascending projections may also vary in extent 
along the main axis of the IC. The terminal fibers from 
the SOC are confined to the ventral part of the laminae 
in the CNIC, whereas those from the VCN, DCN and the 
DNLL extend more dorsally in the laminae, extending 
into the deep region of the DCIC. Comparisons of the 
distribution of afferent axons from the DCN and the LSO 
to the contralateral IC in the same animal  [39]  show that 
layered axons from the DCN and LSO are superimposed 
only in the ventral part of the contralateral central nucle-
us. In the dorsal part of the central nucleus, the layer of 
axons from the DCN does not terminate with afferents 
from the LSO. Similar experiments in the rat, combining 
the injection of two different tracers in the VCN and DCN 
 [40] , suggest that some parts of these projections remain 
segregated within the CNIC laminae. Furthermore, two 
main components in the IC laminae have been reported: 
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a major lamina that included the largest fibers and largest 
boutons, and a broader lamina, composed of thin fibers 
and only small boutons, which flank the major lamina. 
The major laminae originate from larger cell types in the 
cochlear nucleus, while the paralaminar zone may repre-
sent an input from small cells. Thus, two types of IC lam-
inar structures may originate from the cochlear nucleus, 
and the small boutons in the paralaminar zone may pro-
vide an important modulatory input to the neurons of the 
IC. Very recently, Cant and Benson  [18]  demonstrated 
that the CNIC of the gerbil is made of two parts based on 
the inputs they receive from the brainstem. Lateral and 
rostral zones of the CNIC receive input from both the co-
chlear nuclei and SOC, whereas the medial and caudal 
zones of the CNIC receive inputs from the cochlear nu-
cleus but not from the SOC. These and previous data have 
led to the hypothesis that specific functional zones may 
be created within the laminae of the CNIC  [21] . 

 The DCIC receives ascending input from the sagulum 
 [41] . The LCIC and RCIC also receive fibers from many 
non-auditory structures, including the cuneate and tri-
geminal nuclei, the lateral nucleus of the substantia nigra, 
the parabrachial region, the midbrain central gray, the 
periventricular nucleus and the globus pallidus  [42] . 

 Afferent (Descending) Projections ( fig. 4 ) 
 Neurons in the collicular cortices may be more influ-

enced by the AC than by ascending connections because 
of their bias toward descending projections  [6, 20, 37, 42] . 
The descending input to the rat DCIC may originate 
largely from the primary AC bilaterally, with a small 
component to layer 1 from the area ventrocaudal to the 
primary cortex. Like the ascending projections to the 
CNIC, the neocortical terminals terminate in a topo-
graphic, banded pattern in parallel with the isofrequency 
contours of the CNIC  [37] . The external cortex receives 
descending input from the cerebral cortex originating 
immediately rostral to the primary AC  [20, 36, 43] . This 
projection is ipsilateral and terminates in layer 3. 

 Secondary regions of the AC also project to the IC  [20] . 
Cortical area Te2 projects primarily to the superficial lay-
ers of the DCIC and LCIC, while Te3 primarily inner-
vates the RCIC. These projections originate in the pyra-
midal cells of layer V  [44] . In addition, the AC has been 
shown to project not only to the cortical regions of the IC 
but also to the CNIC in the rat. Ultrastructural studies 
have demonstrated that the corticocollicular fibers ter-
minate on thin dendritic shafts and spines, forming small 
boutons with round synaptic vesicles and asymmetric 
glutamatergic synapses  [36, 45] . However, electrical stim-

ulation of the cat AC elicits not only excitatory effects but 
also inhibitory and complex interactions in IC neurons 
 [46] . Thus, the AC may modulate the processing of sounds 
in the IC both directly and also through the activation of 
local inhibitory connections within the IC. 

 A direct descending pathway from the medial genicu-
late to the ECIC was recently demonstrated in the rat  [47] , 
a finding also reported in other species. In addition, 
Marsh et al.  [48]  recently established a direct, widespread 
projection from the basal amygdala to the IC in the mus-
tache bat. They suggest the presence of a rapid thalamo-
amygdalo-collicular feedback circuit that may impose 
emotional content onto processing of sensory stimuli at 
a relatively low level of an ascending sensory pathway. 

 Efferent (Ascending) Projections ( fig. 4 ) 
 Thus far, the general pattern of the inputs to the IC has 

been detailed. In turn, the IC projects to the medial ge-
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  Fig. 4.  Schematic wiring diagram of the afferent connections to 
the left IC and efferent connections of the right IC. Thicker lines 
show heavier projections than thinner lines. Solid lines indicate 
excitatory projections and discontinuous lines inhibitory connec-
tions. VNLL = Ventral nucleus of the lateral lemniscus; VNTB = 
ventral nucleus of the trapezoid body; SPN = superior paraolivary 
nucleus. 
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niculate body (MGB)  [49–51]  and to lower auditory cen-
ters such as the SOC and the cochlear nuclear complex 
 [52–54] . Furthermore, the IC also has projections to non-
auditory nuclei such as the pontine nuclei, a route by 
which auditory information can reach the cerebellum for 
coordination of motor responses to sound  [55] . 

 The CNIC projects to the laminated ventral division 
of the MGB in a strictly tonotopic manner. This projec-
tion is largely to the ipsilateral side but there is also a small 
crossed component. The CNIC also has a weak projection 
to the medial and dorsal divisions. The ECIC projects 
mainly to the dorsal and medial divisions of the MGB. 
The DCIC projects to the dorsal division of the MGB. The 
projections from the three subdivisions of the IC overlap, 
especially in the medial division  [1–6] . 

 The CNIC projections originate from both the F and 
LF neurons  [50, 56] . Although the majority of neurons 
that project from CNIC to the MGB are glutamatergic, 
recent studies have shown that a significant proportion 
of the projection is GABAergic  [56, 57] . The GABAergic 
projection originates from CNIC, DCIC and ECIC neu-
rons, although the proportion from the cortical regions 
is lower. This projection has been confirmed in in vitro 
studies in which short-latency, monosynaptic inhibitory 
postsynaptic potentials from thalamocortical inputs have 
been demonstrated in the MGB [revised in ref.  4, 5 ]. 

 Efferent (Descending) Projections ( fig. 4 ) 
 IC neurons also contribute to the descending auditory 

pathways, targeting the SOC (colliculo-olivary projec-
tions) and the cochlear nuclei (colliculo-cochlear projec-
tion). The rat IC also projects to the non-auditory pontine 
and mesencephalic reticular nuclei  [53] . 

 The  colliculo-olivary  projections form a band of termi-
nals in the ventral nucleus of the trapezoid body  [53, 54] . 
This projection is topographic and originates from the 
CNIC and ECIC. The terminals in the ventral nucleus of 
the trapezoid body overlap the site of origin of the me-
dial olivocochlear system  [54] , although it remains to be 
demonstrated by electron microscopy whether these fi-
bers from the IC make synaptic contact on the medial 
olivocochlear neurons. Physiological studies have shown 
that electrical stimulation of the IC produces an increase 
in the latency and a reduction in the amplitude of the au-
ditory whole-nerve response and also reduces the tempo-
ral threshold shift that appears after the exposure to a 
loud noise  [58] . These effects are similar to those elicited 
by electrical stimulation of the medial olivocochlear sys-
tem. More recent studies have shown that selective elec-
trical stimulation within the CNIC produces frequency-

specific reductions in neural activity in the cochlea  [59]  
that are spatially restricted and bilateral. These effects are 
greater in the contralateral ear  [60] . 

 The  colliculo-cochlear  projection originates in the 
CNIC and ECIC ( fig.  4) and targets the DCN and granule 
cell domain of the VCN, but its functional role is cur-
rently unknown  [53, 61] . 

 Intrinsic and Commissural Connections ( fig. 4 ) 
 In addition to the connections discussed above, the IC 

possesses well-developed fiber systems made up of in-
trinsic and commissural inputs. Fibers that interconnect 
the three subdivisions of the IC on one side are referred 
to as  local  or  intrinsic  while fibers that interconnect the 
two sides are referred to as  commissural .  [9, 11, 42, 62] . 
Both types of fibers may represent collaterals of axons 
with projections to the thalamus or lower brainstem or, 
alternatively, they may represent the sole projection of a 
neuron that is truly an interneuron restricted to the IC 
 [11] . The terminal territories of the intrinsic fibers form 
‘sheets’ that are parallel to the isofrequency contours of 
the CNIC [ 11 , compare fig. 22 and 25]. The sheets extend 
into the DCIC, and, via a sharp bend, into the ECIC  [9, 
62] . Retrograde transport of horseradish peroxidase has 
also shown that the CNIC receives input from the DCIC 
bilaterally and from the ECIC ipsilaterally. The DCIC and 
ECIC on the same side are also mutually intercon-
nected. 

 Recent studies are beginning to uncover the function-
al role for both local and commissural connections. Mill-
er et al.  [11]  have demonstrated that within a given isofre-
quency contour, intrinsic connections ascend from the 
ventrolateral portion to more dorsomedial points along 
the contour, forming a cascaded system of intrinsic feed-
forward connections that seem ideally suited to provide 
the delay lines necessary to produce several forms of se-
lectivity for temporal patterns in IC neurons (see below). 
Injections of  Phaseolus vulgaris  leukoagglutinin or bioti-
nylated dextran amine in one IC show that labeled fibers 
extend over the midline forming a mirror-like sheet on 
the contralateral side, thus indicating connections be-
tween the lamina devoted to the same frequency on the 
two sides. The majority of cells that project to the ipsilat-
eral MGB also send collaterals to the contralateral IC. In 
guinea pigs, the commissural projection may be glutama-
tergic  [63] . Consistent with the presence of both excit-
atory and inhibitory transmitters, physiological studies 
in vitro have shown that the commissural inputs may 
have either an excitatory or inhibitory influence on the 
contralateral IC  [64] . In further in vivo studies, Mal-
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mierca et al.  [65, 66]  recorded sound-evoked responses of 
single neurons in one IC while injecting kynurenic acid 
into a corresponding region of the opposite IC. This pro-
cedure allowed the reversible blockage of excitation by 
commissural projections to the recorded IC. The changes 
observed in the neural responses when inputs from the 
opposite IC are blocked again confirmed that the com-
missural projection exerts both excitatory and inhibitory 
influences. The inhibition could be accounted for by 
monosynaptic or disynaptic connections, and the re-
sponses to both monaural and binaural stimulation are 
affected. Furthermore, the effects are proportionately 
greater at near-threshold sound levels. The results sug-
gest that one function of the commissure of the IC may 
be to modulate the response gain of IC neurons to acous-
tic stimulation. 

 Neurochemistry 

 As already mentioned, the neurochemistry of the F 
and LF neurons has been studied in detail. Both F and LF 
may be GABAergic  [28, 29] , but the majority of neurons 
(75% or more) are not inhibitory. It is tempting to suggest 
that the excitatory neurotransmitter of the IC neurons is 
glutamatergic. The IC lacks glycinergic neurons  [28] . 

 IC neurons possess both N-methyl- D -aspartic acid 
(NMDA) and 2-amino-3-(3-hydroxy-5-methylisoxazol-
4-yl)propionic acid (AMPA) receptors  [67] . The different 
physiological roles of the NMDA and AMPA receptors 
have been studied using microiontophoretic application 
of NMDA and AMPA antagonists in vivo    [67] . Both 
AMPA and NMDA receptors contribute to excitatory re-
sponses at all levels of acoustic stimulation that elicit ac-
tion potentials, although there are more GluR2 and 
GluR3 receptors in the IC than GluR1 and GluR4  [68] . 
The NMDA and AMPA receptors have a selective influ-
ence on early and late components of tone-evoked re-
sponses  [67] . Thus, the AMPA receptors are important at 
the onset of the neuronal responses in the IC while both 
AMPA and NMDA are involved in the maintenance of 
the response for the duration of the stimulus. 

 The NMDA receptors are more abundant in the corti-
ces than in the CNIC  [67] . Thus, their distribution pat-
tern matches that of the denser projection of the descend-
ing projections from the AC ( v.s. ). The cortico-collicular 
projection has been shown to cause long-lasting changes 
( 1 2 h) in the neuronal responses of the IC  [69] , suggest-
ing that the NMDA receptors play a significant role in 
neuronal plasticity. Further evidence of this role has been 

shown in in vitro studies demonstrating that some IC 
neurons exhibit long-term potentiation  [70] . 

 In addition to glutamatergic receptors, IC neurons 
also possess GABA A , GABA B  and glycine receptors  [67] . 
In vivo studies using microiontophoresis have demon-
strated that both GABA and glycine inhibit IC neurons 
in several species  [67, 71, 72] . 

 Other neurotransmitters are also present in the IC and 
appear to be distributed differently by region. Serotonin 
terminals and receptors as well as noradrenergic fibers 
have been reported in the rat  [73] . They originate from 
the locus ceruleus and dorsal raphe nucleus and seem to 
be more abundant in the cortical regions. Their function-
al role is unclear but recent studies in the bat have shown 
that serotonin modulates responses to species-specific 
vocalizations in the IC  [74] . 

 Basic Functional Properties of IC Neurons 

 Space limitation precludes a detailed account of the 
functional properties of the IC neurons; therefore the 
major spectral, binaural and temporal functional proper-
ties of the IC neurons are highlighted. 

 Multi- and single-unit recording to pure tone stimula-
tion and functional mapping studies with c- fos  revealed 
that a fundamental physiological feature of the CNIC is 
its tonotopic organization ( fig. 5 ). A narrow range of best 
frequencies is represented within each isofrequency lam-
ina  [25, 26] . In addition, the laminae have highly orga-
nized representations of acoustic signals based on both 
spectral and temporal properties [for review see ref.  25, 
75 ]. 

 Neurons in the IC exhibit several different types of 
peri-stimulus time histograms, including onset, on-sus-
tained, pauser and sustained and regular responses  [71] . 
The majority of neurons in the IC have V-shaped tuning 
curves similar to those seen in the auditory nerve, but 
frequency response areas in the IC may also include non-
V-shaped maps, as described in many species  [72, 76–79] . 
The non-V-shaped maps form a heterogeneous group 
that includes closed, narrow, low- and high-tilt, and mul-
tipeaked types ( fig. 6 ). 

 Binaural processing is initiated at the level of the SOC 
where interaural time and intensity differences are first 
encoded, but there appears to be further binaural pro-
cessing in the IC. Kelly et al.  [80]  classified the responses 
of neurons to interaural intensity differences in the rat as 
either suppression, summation or mixed. Binaural sup-
pression responses were more numerous at high frequen-
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cies and summation responses were more numerous at 
low frequencies. Studies based on the iontophoretic ap-
plication of GABA and glycine antagonists have shown 
that neural inhibition contributes to the binaural re-
sponse of neurons in the IC  [81] . 

 An important issue is the functional significance of 
binaural interaction at the level of the IC, given that the 
basic binaural comparisons occur at the level of the SOC. 
Kuwada et al.  [81]  have shown the emergence of interau-
ral time difference (ITD) functions with an asymmetrical 
shape (sawtooth ITD functions) in the IC through the 
convergence of excitatory input from MSO and inhibi-
tory input from DNLL. These sawtooth ITD functions 
are different from the classical peak or trough ITD func-
tions seen in neurons in the SOC. Spitzer and Semple  [82]  
have also suggested that the emergence of motion sensi-
tivity in the IC might reflect the same pattern of conver-
gence. Sound sources are not stationary in nature, and it 
may be that the binaural processing that takes place in the 
IC is related to the analysis of dynamic properties of 
sound source location. It may also be that the conver-
gence of binaural pathways and spectral information at 

the IC could contribute to a map of auditory space, as it 
is the case in the barn owl’s midbrain  [83] . 

 In the first part of this review, an idea of the complex-
ity of the ascending auditory pathways was given. As de-
tailed very elegantly by Casseday et al.  [2] , the ascending 
input to the IC may produce an array of delay lines and 
temporally redesigned response patterns that alter the 
ways in which the neuronal representation of any given 
stimulus is distributed in time. Temporally modified in-
puts from multiple pathways, combined with excitation 
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  Fig. 5.  Cartoon of the tonotopic and laminar organization of the 
IC. The cartoon shows a 3D schematic view of two ICs, and the 
anatomical laminae in the the right CNIC in different colors.
D = Dorsal; A = anterior; L = left; R = right. The figure was kind-
ly provided by Dr. G. Langner. 

  Fig. 6.  Frequency response areas (FRA) from the IC.  a  V shaped. 
 b  Narrow (non-V shaped). Data from Hernández et al.  [78] . 
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and inhibition, may be the basis for creating selectivity to 
temporal features of sounds in the IC. The first account 
suggesting that neural delay lines might be used to ana-
lyze auditory temporal patterns was presented by Jeffress 
in  [84]  in his now classical model for encoding ITDs. 

Licklider  [85]  also proposed a model for frequency dis-
crimination based on coincidence detection and synaptic 
delays. 

 Ascending inputs provide the IC with different tem-
poral response patterns that comprise onset, sustained 

  Fig. 7.  Example of two ( a ,  b ) duration-tuned neurons from the IC and one non-duration-tuned neuron ( c ).
Redrawn from Pérez-González et al.  [88] . 
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and offset responses with a wide range of latencies. They 
may be either excitatory or inhibitory ( fig. 4 ). The results 
of the convergence onto single IC cells must result in a 
multifaceted temporal response of excitation and inhibi-
tion as demonstrated by intracellular recordings  [81] . 
Temporal features that are generated de novo in the IC 
include tuning to rate and direction of frequency-modu-
lated sweeps  [86] , tuning to sound duration  [87, 88] 
 ( fig. 7 ) or delay of two sounds  [89] , and tuning to tempo-
rally sensitive facilitation in frequency combination neu-
rons  [90] . 

 Thus far, the physiological features of the neurons of 
the central nucleus have been described. There are no 
detailed studies of the other subdivisions apart from the 
early studies from Aitkin et al.  [91, 92] , in which they 
demonstrated that ECIC neurons are multimodal, in 
agreement with their multisensory inputs. Only very re-
cently, Pérez-Gonzalez et al.  [93]  have revealed that some 
neurons in the rat DCIC and ECIC show rapid and pro-
nounced habituation to repeated presentations of identi-
cal stimuli but briefly recovered their responsiveness 
when some stimulus parameter was changed. Hence 
these neurons have been referred to as ‘novelty detec-
tors’. An important function of the auditory system is to 
differentiate behaviorally uninteresting patterns of 
sound, which are often repetitive, from sounds that may 
require attention or action, and thus novelty neurons 
may be important for this vital function. Furthermore, 
the properties of novelty neurons in the IC are consistent 
with stimulation paradigms that produce mismatch 
negativity in humans and animals, so novelty neurons 
might be the neuronal correlate of mismatch negativity. 
Similar neurons have been shown also to be present in 
the AC  [94] . 

 Finally, a few additional comments about plasticity in 
the IC are worth mentioning. As described above, the IC 
is equipped with neuronal machinery (NMDA, AMPA 
and GABA receptors as well as neuromodulators such as 
acetylcholine, serotonin and adrenaline) that has been 
shown to be the basis for plasticity in other brain areas. 
Nevertheless, it is somewhat puzzling that there is little 
evidence for plasticity in the adult IC after cochlear dam-
age or spiral ganglion lesions. Despite the wide variety in 
techniques employed to produce cochlear trauma in or-
der to alter the response properties of the IC neurons  [95, 
96] , most of the changes seen can be explained as a postle-
sional expression of preexisting inputs  [96, 97] . This is in 
contrast to the well-established plastic changes demon-
strated at thalamic and cortical levels in the auditory sys-
tem  [97–99] . 

 Concluding Remarks 

 The IC is not only the main site of termination for the 
ascending fibers of the lateral lemniscus, it is also heavily 
innervated by the AC. Furthermore, the IC receives 
crossed projections from its counterpart and possesses a 
dense network of local connections  [1–5] . Thus, the IC 
occupies a strategic position in the central auditory sys-
tem and may be considered as a central hub or an inter-
face between the lower auditory pathway, the AC and mo-
tor systems  [2] . Anatomical and physiological experi-
ments demonstrate that the IC is involved in a great 
diversity of functional roles in the auditory system, and 
that most of the interesting auditory features might al-
ready be extracted from incoming sounds by this mid-
brain nucleus. It has even been suggested that the IC 
might be considered as the auditory analog of the pri-
mary visual cortex  [100] , leaving the AC to organize these 
features into auditory objects. 

 The ultimate goal of auditory science is to understand 
completely how we hear. The aim of this review was to 
outline the interaction between structure and function in 
the auditory midbrain. Elucidation of the elements of the 
‘auditory scaffold’ will help to fit the pieces of the puzzle 
together and solve the mechanisms by which the audi-
tory system processes acoustic stimuli, i.e. how we hear. 
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