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Can intrinsic noise induce various resonant peaks?
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Abstract

We theoretically describe how weak signals may be efficiently trans-
mitted throughout more than one frequency range in noisy excitable
media by kind of stochastic multiresonance. This serves us here to rein-
terpret recent experiments in neuroscience, and to suggest that many
other systems in nature might be able to exhibit several resonances.
In fact, the observed behavior happens in our (network) model as a re-
sult of competition between (1) changes in the transmitted signals as
if the units were varying their activation threshold, and (2) adaptive
noise realized in the model as rapid activity–dependent fluctuations
of the connection intensities. These two conditions are indeed known
to characterize heterogeneously networked systems of excitable units,
e.g., sets of neurons and synapses in the brain. Our results may find
application also in the design of detector devices.
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multiresonance; connection fatigue; short–time plasticity; multiplica-
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Some systems in nature are known to process efficiently weak signals
in noisy environments. A novel mechanism that explains such ability is
known as stochastic resonance (SR). This is associated with the occurrence
of a peak or bell–shaped dependence in the transfer of information through
an excitable system as a noise source is conveniently tuned. More specifi-
cally, low or slow noise impedes detecting a relatively weak signal but, as
the noise raises, the system eventually responds correlated with the signal,
which shows as a peak of information transfer. The signal is again obscured
at higher noise levels. This has been reported to occur in different set-
tings, including electronic circuits, ring lasers, crayfish mechanoreceptors,
ion channels, sensory neurons, hippocampus, brain stem, and cortical areas
[1, 2, 3, 4]. An intriguing issue raised is whether a given system may filter
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with gain in different noise regimes, which would have technological appli-
cation. After the first proposal of stochastic multiresonance (SMR) [5], the
existence of two or more resonant peaks has been predicted for single–mode
lasers [6], surface phenomena [7], biological diversity [8] and intracellular
calcium oscillations in hepatocytes [9, 10], and it has also been described in
somewhat more abstract settings [11, 12, 13, 14, 15, 16]. Though there is
no definite claim for experimental evidence of SMR yet, two recent sets of
experimental data [17, 18] admit such interpretation.

Here we demonstrate that a single resonant mechanism may indeed help
in transmitting signals throughout different noise frequencies. More specifi-
cally, we use an explicit mathematical model —based on independent famil-
iar empirical descriptions for both neuron units and their synaptic links—
to reveal the existence of a double resonance in an experiment concerning
the human tactile blink reflex [18]. Our model behavior is also consistent
with recent reports on the transfer of information with different frequencies
in the hippocampus [19]. On the other hand, the model here allows one to
modify the separation between the two peaks in one order of magnitude or
more, and it may admit generalization to show more than two resonances,
which makes the “device” very versatile.

Our main result suggests looking for SMR in nature as part of a needed
effort to better understand how the details in excitable systems influence
transmission. Previous studies of SR and SMR in nonlinear settings most
often involved a source of controlled, additive noise getting rid of corre-
lations. The case of an intrinsic, therefore uncontrolled, noise resulting
from inherent activity in the medium is even more interesting and likely
to occur in nature. In a cortical region, for instance, a given neuron may
receive, in addition to the (weak) signal of interest, uncorrelated, i.e., just
noisy signals from other neurons at frequencies that vary in time during
the normal operation of the system. Following previous efforts [20, 21], we
consequently investigated the possibility of having SMR associated with the
fact that both the main signal and the noise transmit through dynamic
connections, e.g., synapses, whose weights change with time and, therefore,
constantly modulate transmission. We found in this way that short–term
activity–dependent “fatigue plasticity” —such as synaptic depression and
facilitation which is known to modify the neural response causing complex
behavior [22, 23, 24, 25, 26]— may indeed produce SMR in a model of neu-
ral media in agreement with recent observations. The setting in this paper,
which may be seen as an application of a general study within a biological
context [21], intends both to serve as a simple illustration of our point and
to make contact with a specific experiment. However, it is sensible to an-
ticipate that the main outcome here may hold rather generally in excitable
systems, given that these seem to share all the relevant features in our model
[27, 28].

Consider a networked system in which units, say neurons, receive: (i)
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a weak signal from other brain areas and/or from the senses or whatever
external terminals and, in addition to this, (ii) uncorrelated, noisy signals
from other units. The latter signals will be portrayed by means of action
potentials (AP) —from the many presynaptic neurons to the postsynaptic

neuron—whose rates follow a Poisson distribution with mean f [29]. Besides
the stochasticity this implies, we shall imagine the neurons connected by dy-
namic, activity–dependent links. To be specific, we shall adopt the model
of dynamic synapses in [30]. That is, any synaptic link, say i, is essentially
stochastic which is implemented assuming it composed of an arbitrary num-
ber, Mi, of functional contacts, each releasing its transmitter content with
probability u when an AP signal from other units arrives. Furthermore, to
implement excitability (and, more important here, kind of threshold fick-
leness), the contact is assumed to become inactive afterwards for a time
interval, τ ; this is a random variable with exponential distribution pt (τ) of
mean τrec at time t. Therefore, each activation event, i.e., the arrival of an
AP at i at time ti generates a (postsynaptic) signal, Ii(t), which evolves
according to

dIi(t)

dt
= −Ii(t)

τin
+

Mi
∑

ℓ=1

Ji,ℓ xi,ℓ δ(t− ti). (1)

Here, Ji,ℓ is the modification in the signal produced by the AP in contact
ℓ after the release event, and xi,ℓ (t) = 1 when the contact is activated,
which occurs with probability u [1− pt (τ)] , and 0 otherwise. The time con-
stant τin is a measure of the transmission duration (of order of milliseconds
for a known type of fast postsynaptic receptors). For N units, the total
postsynaptic signal is IN (t) =

∑N
i=1

Ii(t). We also assume, as in [30], that
both the number and the strength of functional contacts that a presynaptic
unit i establishes, namely, Mi and Ji,ℓ vary with i according to Gaussian
distributions of mean and standard deviation (M,∆M ) and (J,∆J) , respec-
tively. To compare with a specific experiment, we assume M = 50 ± 0.1
contacts, J = 0.3 ± 0.1 mV, u = 0.5, τin = 1 ms and τrec = 500 ms [31].
Just for simplicity [35], we consider a weak, low–frequency sinusoidal sig-
nal S(t) ≡ ds cos(2πfst) which is transmitted to the (postsynaptic) unit
to monitor the corresponding response and the conditions in which reso-
nance occurs. With this aim, we then compute the generated voltage, V (t),
assuming a generic dynamics of the form:

dV

dt
= F (V, IN , S) , (2)

where the function F is to be determined.
Once the links are determined, specifying F means adopting a model for

each unit. A familiar choice is the integrate–and–fire (IF) model in which
F is linear with V [36]. This assumption of a fixed firing threshold is a
poor description for most purposes [37], however. Instead, one could as-
sume a networked stochastic set of (postsynaptic) units —e.g., a convenient
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adaptation of the network model in [27, 28]— but, for the shake of simplic-
ity, we shall inspire ourselves here in the FitzHugh–Nagumo (FHN) model
[38]. The excitability is then implemented assuming that the thresholds for
neuron shoots constantly adapt to the input current, which is realistic for
neuron media [39]. Summing up, the unit dynamics is

dV (t)

ǫ dt
= V (t) [V (t)− a] [1− V (t)]−W (t) +

S̃(t)

ǫ τm
, (3)

where S̃(t) = S(t)+ ρIN (t) is the input, with ρ a resistance that transforms
the current IN into a voltage. W (t), which stands for a (slow recovery)
variable accounting for the refractory time of the unit, satisfies:

dW (t)

dt
= b V (t)− cW (t). (4)

In order to compare with the experiment of interest, we shall take a = 0.001,
b = 3.5ms−1, c = 1ms−1, and ǫ = 1000ms−1 which makes the (dimen-
sionless) voltage V (t) = 1 to correspond to 100mV and the time variable
to be within the ms range. We further assume a membrane resistance
ρ = 0.1GΩ/mV and a time constant τm = 10 ms both within the phys-
iological range [40].

The degree of correlation between the input signal and the output V (t)
is defined as

C = 〈S(t)ν(t)〉 ≡ 1

T

∫ t0+T

t0

S(t)ν(t)dt. (5)

Here, ν(t) is the instantaneous firing rate of the postsynaptic unit, that is,
the average number of AP’s generated at time t as a consequence of input S̃.
(In practice, the average is over a set of different postsynaptic AP’s trains
generated under the same experimental conditions.) The function C (f) that
follows from this is shown as a solid line in figure 1.

As said above, previous studies illustrated SR as a peak of C when
one varies the level of a noise which is apropos injected in the system. In
our excitable model system, however, is the synaptic current IN (t) —and
not an external noise— what directly affects dynamics. Tuning the level
of noise now means increasing the frequency f of the uncorrelated AP’s
that are responsible for the generation of IN (t). The noise embedded in
the AP’s trains does not directly affect the unit, and this has a strong
consequence on the shape of C. That is, SMR is then a consequence of
interplay between short–term (synaptic) plasticity and threshold variability
associated to dynamics (2).

To be more specific, let us write the total signal as IN = ĪN ± σI , where
ĪN > 0. In the IF model (fixed threshold), ĪN tends to reduce the voltage
needed for the generation of an AP, so that the excitability of the neuron
increases with ĪN . In the FHN model, however, the main effect of ĪN is to
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Figure 1: The function C (as defined in the text but scaled, arbitrary units
so that it measures relative variations of the relevant correlation), according
to the experimental data in [18] (full squares with their error bars) and our
prediction (solid line). The empty symbols are the response when the signal
S (t) , instead of the sinusoidal (therefore, time correlated) one producing the
solid line, consists of a train of (uncorrelated) Poissonian pulses which, as the
main signal, also endure the model synaptic dynamics; the only noticeable
change is that the response results more noisy in this case due to extra
randomness. The dashed line corresponds to the interpretation of these
data given in [18]. (The parameter values used in these plots are well within
the corresponding physiological range; see [41] and the main text for details.)

move the stationary solution of system (3)–(4) (and the V nullcline) towards
more positive values, so that both the resting voltage value and the voltage
threshold become more positive. Then, for the range of ĪN values of interest
here, the neuron excitability depends more on the fluctuation σI than on ĪN .
On the other hand, for dynamic synapses, σI = σI(f) has a non-monotonic
dependence on f —it first increases from 0, reaches a maximum, say f∗,
and then decreases with increasing f to cero again. As a result, if the level
of fluctuations at f∗ is such that the unit is above threshold, there will
be two frequency values for which —according to familiar arguments [1]—
fluctuations may eventually overcome the potential barrier between silent
and firing states, which results in two resonant peaks.

The model here allows one to understand, even semi–quantitatively re-
cent data by Yasuda et al. [18] showing how short–term synaptic depression
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causes stochastic resonance in human tactile blink reflex. These authors
monitored an input–output correlation function between tactile signal and
blink reflexes associated with postsynaptic responses of neurons in the cau-
dal pontine reticular nucleus (PnC) of the brainstem [42]. In addition to the
(weak) tactile signal, these neurons received uncorrelated auditory inputs
that are viewed as a noise background. Yasuda et al. then concluded that,
for realistic short–term depression parameters, the postsynaptic neuron acts
as an error–free detector. That is, the value of the input–output correlation
function is maintained at optimal high values for a wide range of background
noisy rates.

A close inspection of the Yasuda et al. data from the perspective above
reveals some significant discrepancies of the fit in that study at low noise
rates. That is, while experiments for low noise rates show a high input–
output correlation level (see Table I in Ref.[18]), the theory —based on the
oversimplified, linear IF neuron model with fixed firing threshold— they use
to interpret and compare with their data does not predict SMR but a very
low level of correlation at low frequency which is not supported by data
(consequently, the authors in [18] excluded their low frequency data from
their analysis). This is shown in figure 1. The disagreement may be justified
by accepting that, at such low rate and due to the high neuron threshold in
PnC area, the auditory noise is not enough to evoke a postsynaptic response
correlated to the signal. So the high level of the correlation observed can
only be understood by the effect of noise coming from other brain areas.
Those authors did not study this additional noise source, however, so that
the question of whether other brain areas play a role here remains unan-
swered. On the other hand, if such a noise is relevant, its effect should be
a constant noise added to the auditory noise. Therefore, it should induce a
constant increment in the noise level, which cannot explain two local max-
ima apparently observed in the experimental correlation data (fig.1) at noise
levels around 1 and 50 Hz, respectively.

The drawing of data in the plot of figure 1, particularly those for small
f undervalued in [18], requires a comment [41]. That is, one needs to use
a specific relationship between the auditory noise and f. Let us assume [43]
that the firing rate of neuron i in the PnC area induced by an auditory input
A is fi = f0 + αAΘ(A − Ai), where f0 is the level of activity in absence of
any input, α is a constant, Θ(x) is the step function, and Ai is the minimum
input needed to induce non-spontaneous activity in neuron i. The known
variability of the firing thresholds in most, e.g., PnC neurons [42], suggests
one to sample Ai from a Gaussian distribution with mean A0 and variance
σ2
A. It then follows that the mean firing rate (in Hz) induced in the PnC

area by an auditory input A (in dB) is

f = f0 +
αA

2

{

1 + erf

(

A−A0√
2σA

)}

. (6)
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This, which generalizes the linear relationship used in [18] within a restricted
range, transforms all levels of auditory noise (between 30 and 90 dB in the
experiment of interest) into the frequency domain. For A ≫ A0, (6) reduces
to a linear relation.

Summing up, our model system predicts two maxima, and not only one,
in the transfer of information during the specific situation that we show in
fig.1. This, to be interpreted as SMR phenomena, provides a priori a good
description of the only sufficiently detailed observation we know, namely, it
fits all the data in [18], and it is also in qualitative agreement with several
predictions, as mentioned above, and with the global behavior reported in
various experiments [17, 19]. The minimum which is exhibited between the
two peaks is to be associated to noise–induced firings that are uncorrelated
with the signal. The occurrence of an extra peak at low frequency, which
is also suggested by experimental data in [44], is most interesting, e.g., as a
way to efficiently detect incoming signals along two well defined noise levels.
This seems to occur in nature and could also be implemented in man–made
devices. The number of peaks and the frequency range at which they are
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Figure 2: This shows schematically how the form of the information transfer
depends on assumptions concerning the neuron units and the synaptic links.
That is, an integrate–and–fire (IF) model unit can just produce a single
resonance, and the same is true for FitzHugh-Nagumo units and for IF
units with varying activation threshold as far as the connections are frozen.
Nevertheless, these two model units can produce two resonance peaks if
the connections are dynamic, e.g., if they show short–time fatigue plasticity
which is known to occur in many networks in nature.

located can easily be controlled in the model by tuning parameter values,
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particularly those concerning synaptic dynamics.
Finally, we remark the model indication of two main ingredients of SMR.

On one hand, the system is expected to have activity–dependent excitability.
This may require short–term variations of intensity links in a networked
system, which is very common in practice [27]. On the other hand, the units
in our model are able to adapt activation or firing thresholds to the level
of mean input. It is sensible to expect such adaptive thresholds [45, 21],
and they have been observed recently in actual cortical regions [46], for
instance. A main conclusion is therefore that SMR should be observed rather
generally in neural media and in other excitable systems. We summarize in
figure 2 the conditions in which such an interesting phenomenon may occur.
Incidentally, it is also worthwhile mentioning that the present work adds to
previous efforts analyzing the consequences in many branches of science of
the interplay between nonlinearities, signal and forces, and environmental
noise [47].
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FEDER FIS2009–08451.
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