[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Postdoctoral Research Fellow on "Statistical Anomaly Detection", CVSSP, University of Surrey, U.K. (Closing: Feb 28th, 2013)

Research Fellow

Statistical anomaly detection

Centre for Vision Speech and Signal Processing (CVSSP)

University of Surrey, United Kingdom

Salary: £29,541-£31,331 per annum

(Subject to qualifications and experience)

Applications are invited for a three-year postdoctoral research fellow position available at CVSSP, starting on Monday, April 1, 2013, to work on a project entitled "Signal Processing Solutions for a Networked Battlespace", funded by the Engineering and Physical Sciences Research Council (EPSRC) and Defence Science and Technology Laboratory (Dstl), as part of the Ministry of Defence (MoD) University Defence Research Centre (UDRC) Scheme in signal processing. This project will be undertaken by a unique consortium of academic experts from Loughborough, Surrey, Strathclyde and Cardiff (LSSC) Universities together with six industrial project partners QinetiQ, Selex-Galileo, Thales, Texas Instruments, PrismTech and Steepest Ascent. The overall aim of the project is to provide fundamental signal processing solutions to enable intelligent and robust processing of the very large amount of multi-sensor data acquired from various networked communications and weapons platforms, in order to retain military advantage and mitigate smart adversaries who present multiple threats within an anarchic and extended operating area (battlespace). The research fellow will be expected to work in close collaboration with our academic and industrial partners together with members of the lead consortium based at Edinburgh and Heriott Watt Universities.

The prospective research fellow will be expected to develop algorithms and systems for automated statistical anomaly detection and classification in high dimensions for the networked battlespace. In particular, he/she will develop algorithms for automatic detection of anomalies from multidimensional, undersampled, non-complete datasets and unreliable sources, and solutions to anomaly detection with the presence of uncertainties and in complex networks (graphs), e.g., using domain knowledge.

Successful applicants will join the CVSSP, a leading research group in sensory (visual and auditory) data analysis and interpretation, and will work closely with Dr Wenwu Wang, Prof Josef Kittler and Dr Philip Jackson. CVSSP is one of the largest UK research groups in machine vision and audition with more than 120 researchers, with core expertise in Signal Processing, Image and Video Processing, Pattern Recognition, Computer Vision, Machine Learning and Artificial Intelligence, Computer Graphics and Human Computer Interaction. CVSSP forms part of the Department of Electronic Engineering, which received one of the highest ratings (joint second position across the UK) in the last research quality assessment, i.e. 2008 RAE, with 70% of its research classified as either 4* ("world-leading") or 3* ("internationally excellent").

Applicants should have a PhD degree or equivalent in electrical and electronic engineering, computer science, mathematical science, statistics, physics, or related disciplines. Applicants should be able to demonstrate excellent mathematical, analytical and computer programming skills. Advantages will be given to the applicants who have experience in anomaly detection, statistics, machine learning, signal processing, and/or pattern recognition.

For informal inquiries about the position, please contact Dr Wenwu Wang (w.wang@xxxxxxxxxxxx) or Prof Josef Kittler (j.kittler@xxxxxxxxxxxx).

For an application pack and to apply on-line please go to our website: http://www.surrey.ac.uk/vacancies. If you are unable to apply on-line please contact Mr Peter Li, HR Assistant on Tel: +44 (0) 1483 683419 or email: k.li@xxxxxxxxxxxx

The closing date for applications is Thursday February 28th, 2013.

For further information about the University of Surrey, please visit www.surrey.ac.uk.

We acknowledge, understand and embrace cultural diversity.