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ABSTRACT

The INTERSPEECH 2021 Acoustic Echo Cancellation Challenge
is intended to stimulate research in the area of acoustic echo can-
cellation (AEC), which is an important part of speech enhancement
and still a top issue in audio communication and conferencing sys-
tems. Many recent AEC studies report good performance on syn-
thetic datasets where the training and testing data come from the
same underlying distribution. However, the AEC performance often
degrades significantly on real recordings. Also, most of the con-
ventional objective metrics such as echo return loss enhancement
(ERLE) and perceptual evaluation of speech quality (PESQ) do not
correlate well with subjective speech quality tests in the presence
of background noise and reverberation found in realistic environ-
ments. In this challenge, we open source two large datasets to train
AEC models under both single talk and double talk scenarios. These
datasets consist of recordings from more than 5,000 real audio de-
vices and human speakers in real environments, as well as a synthetic
dataset. We also open source an online subjective test framework and
provide an online objective metric service for researchers to quickly
test their results. The winners of this challenge will be selected based
on the average Mean Opinion Score (MOS) achieved across all dif-
ferent single talk and double talk scenarios.

Index Terms— Acoustic Echo Cancellation, deep learning, sin-
gle talk, double talk, subjective test

1. INTRODUCTION

With the growing popularity and need for working remotely, the use
of teleconferencing systems such as Microsoft Teams, Skype, We-
bEx, Zoom, etc., has increased significantly. It is imperative to have
good quality calls to make the users’ experience pleasant and pro-
ductive. The degradation of call quality due to acoustic echoes is
one of the major sources of poor speech quality ratings in voice and
video calls. While digital signal processing (DSP) based AEC mod-
els have been used to remove these echoes during calls, their per-
formance can degrade when model assumptions are violated, e.g.,
fast time-varying acoustic conditions, or unknown signal processing
blocks, non-linearities, and failure of other models (e.g. background
noise estimates). This problem becomes more challenging during
full-duplex modes of communication where echoes from double talk
scenarios are difficult to suppress without significant distortion or
attenuation [1].

With the advent of deep learning techniques, several supervised
learning algorithms for AEC have shown better performance com-
pared to their classical counterparts [2, 3, 4]. Some studies have also
shown good performance using a combination of classical and deep
learning methods such as using adaptive filters and recurrent neu-
ral networks (RNNs) [4, 5] but only on synthetic datasets. While
these approaches provide a good heuristic on the performance of

PCC SRCC

ERLE 0.31 0.23
PESQ 0.67 0.57

Table 1. Pearson and Spearman rank correlation between ERLE,
PESQ and P.808 Absolute Category Rating (ACR) results on single
talk with delayed echo scenarios (see Section 5).

AEC models, there has been no evidence of their performance on
real-world datasets with speech recorded in diverse noise and rever-
berant environments. This makes it difficult for researchers in the
industry to choose a good model that can perform well on a repre-
sentative real-world dataset.

Most AEC publications use objective measures such as ERLE
[6] and PESQ [7]. ERLE is defined as:

ERLE = 10 log10
E[y2(n)]

E[e2(n)]
(1)

where y(n) is the microphone recording of the played out far end
signal (the unsuppressed echo), and e(n) is the residual echo after
cancellation. ERLE is only appropriate when measured in a quiet
room with no background noise and only for single talk scenarios
(not double talk). PESQ has also been shown to not have a high cor-
relation to subjective speech quality in the presence of background
noise [8]. Using the datasets provided in this challenge we show the
ERLE and PESQ have a low correlation to subjective tests (Table 1).
In order to use a dataset with recordings in real environments, we
can not use ERLE and PESQ. A more reliable and robust evaluation
framework is needed that everyone in the research community can
use, which we provide as part of the challenge.

This AEC challenge is designed to stimulate research in the AEC
domain by open sourcing a large training dataset, test set, and subjec-
tive evaluation framework. We provide two new open source datasets
for training AEC models. The first is a real dataset captured us-
ing a large-scale crowdsourcing effort. This dataset consists of real
recordings that have been collected from over 5,000 diverse audio
devices and environments. The second is a synthetic dataset with
added room impulse responses and background noise derived from
[9]. An initial test set will be released for the researchers to use dur-
ing development and a blind test near the end which will be used to
decide the final competition winners. We believe these datasets are
large enough to facilitate deep learning and representative enough
for practical usage in shipping telecommunication products.

This is the second AEC challenge we have conducted. The first
was held at ICASSP 2021 [10] and included 17 participants with
entries ranging from pure deep models, hybrid linear AEC + deep
echo suppression, and DSP methods. The results show that the deep
and hybrid models far outperformed DSP methods, with the winner



being a pure deep learning model. However, there is still much room
for improvement. To improve the challenge and further stimulate
research in this area we have made the following changes:

• The dataset has increased from 2,500 devices and environ-
ments to 5,000 to provide additional training data.

• The test set has been significantly improved to include more
real-world issues that challenge echo cancellers, such as clock
drift, gain variations on the near end, more severe echo path
changes, glitches in the mic/speaker signal, and more devices
with poor onboard AEC’s. This test set should be more chal-
lenging than the first challenge.

• The test framework has been improved to increase the ac-
curacy of echo impairment ratings in the presence of back-
ground noise.

• The challenge includes a real-time and non-realtime track.

• Additional time is given to complete the challenge.

• A new Azure Service based objective metric is provided that
has a high correlation to human ratings (see Table 2).

The training dataset is described in Section 2, and the test set
in Section 3. We describe a DNN-based AEC method in Section 4.
The online subjective evaluation framework is discussed in Section
5, and the objective service in Section 6. The challenge rules are
described in Section 7.

2. TRAINING DATASETS

The challenge will include two new open source datasets, one real
and one synthetic. The datasets are available at https://github.com/
microsoft/AEC-Challenge.

2.1. Real dataset

The first dataset was captured using a large-scale crowdsourcing
effort. This dataset consists of more than 30,000 recordings from
5,000 different real environments, audio devices, and human speak-
ers in the following scenarios:

1. Far end single talk, no echo path change

2. Far end single talk, echo path change

3. Near end single talk, no echo path change

4. Double talk, no echo path change

5. Double talk, echo path change

6. Sweep signal for RT60 estimation

For the far end single talk case, there is only the loudspeaker
signal (far end) played back to the users and users remain silent (no
near end signal). For the near end single talk case, there is no far
end signal and users are prompted to speak, capturing the near end
signal. For double talk, both the far end and near end signals are ac-
tive, where a loudspeaker signal is played and users talk at the same
time. Echo path change was incorporated by instructing the users to
move their device around or bring themselves to move around the
device. The near end single talk speech quality is given in Figure 2.
The RT60 distribution for the dataset is estimated using a method by
Karjalainen et al. [11] and shown in Figure 3. The RT60 estimates
can be used to sample the dataset for training.

We use Amazon Mechanical Turk as the crowdsourcing plat-
form and wrote a custom HIT application which includes a custom

Fig. 1. The custom recording application recorded the loopback and
microphone signals.

Fig. 2. Sorted near end single talk clip quality (P.808) with 95%
confidence intervals.

tool that raters download and execute to record the six scenarios de-
scribed above. The dataset includes only Microsoft Windows de-
vices. Each scenario includes the microphone and loopback signal
(see Figure 1). Even though our application uses the WASAPI raw
audio mode to bypass built-in audio effects, the PC can still include
Audio DSP on the receive signal (e.g., equalization and Dynamic
Range Compression (DRC)); it can also include Audio DSP on the
send signal, such as AEC and noise suppression.

For clean speech far end signals, we use the speech segments
from the Edinburgh dataset [12]. This corpus consists of short single
speaker speech segments (1 to 3 seconds). We used a long short term
memory (LSTM) based gender detector to select an equal number of
male and female speaker segments. Further, we combined 3 to 5
of these short segments to create clips of length between 9 and 15
seconds in duration. Each clip consists of a single gender speaker.
We create a gender-balanced far end signal source comprising of 500
male and 500 female clips. Recordings are saved at the maximum
sampling rate supported by the device and in 32-bit floating point
format; in the released dataset we down-sample to 16kHz and 16-bit
using automatic gain control to minimize clipping.

For noisy speech far end signals we use 2000 clips from the
near end single talk scenario that were rated between MOS 3 and 4
using ITU-T P.808 subjective testing framework. Clips are gender
balanced to include an equal number of male and female voices.

For near end speech, the users were prompted to read sentences
from TIMIT [13] sentence list. Approximately 10 seconds of audio
is recorded while the users are reading.

2.2. Synthetic dataset

The second dataset provides 10,000 synthetic scenarios, each includ-
ing single talk, double talk, near end noise, far end noise, and vari-
ous nonlinear distortion scenarios. Each scenario includes a far end

https://github.com/microsoft/AEC-Challenge
https://github.com/microsoft/AEC-Challenge


Fig. 3. Distribution of reverberation time (RT60).

speech, echo signal, near end speech, and near end microphone sig-
nal clip. We use 12,000 cases (100 hours of audio) from both the
clean and noisy speech datasets derived in [9] from the LibriVox
project1 as source clips to sample far end and near end signals. The
LibriVox project is a collection of public domain audiobooks read
by volunteers. [9] used the online subjective test framework ITU-T
P.808 to select audio recordings of good quality (4.3 ≤ MOS ≤ 5)
from the LibriVox project. The noisy speech dataset was created by
mixing clean speech with noise clips sampled from Audioset [14],
Freesound2 and DEMAND [15] databases at signal to noise ratios
sampled uniformly from [0, 40] dB.

To simulate a far end signal, we pick a random speaker from
a pool of 1,627 speakers, randomly choose one of the clips from
the speaker, and sample 10 seconds of audio from the clip. For the
near end signal, we randomly choose another speaker and take 3-7
seconds of audio which is then zero-padded to 10 seconds. Of the
selected far end and near end speakers, 71% are female and 67% are
male. To generate an echo, we convolve a randomly chosen room
impulse response from a large internal database with the far end sig-
nal. The room impulse responses are generated by using Project
Acoustics technology3 and the RT60 ranges from 200 ms to 1200
ms. In 80% of the cases, the far end signal is processed by a non-
linear function to mimic loudspeaker distortion. For example, the
transformation can be clipping the maximum amplitude, using a sig-
moidal function as in [16], or applying learned distortion functions,
the details of which we will describe in a future paper. This signal
gets mixed with the near end signal at a signal to echo ratio uniformly
sampled from -10 dB to 10 dB. The far end and near end signals are
taken from the noisy dataset in 50% of the cases. The first 500 clips
can be used for validation as these have a separate list of speakers
and room impulse responses. Detailed metadata information can be
found in the repository.

3. TEST SET

Two test sets are included, one at the beginning of the challenge and
a blind test set near the end. Both consist of approximately 1000 real
world recordings, between 30-45 seconds in duration. The datasets
include the following scenarios that make echo cancellation more
challenging:

• Long- or varying delays, i.e., files where the delay between
loopback and mic-in is atypically long or varies during the

1https://librivox.org
2https://freesound.org
3https://www.aka.ms/acoustics

recording.

• Strong speaker and/or mic distortions.

• Stationary near-end noise.

• Non-stationary near-end noise.

• Recordings with audio DSP processing from the device, such
as AEC.

• Glitches, i.e., files with ”choppy” audio, for example, due to
very high CPU usage.

• Gain variations, i.e., recordings where far-end level changes
during the recording (2.1), sampled randomly.

4. BASELINE AEC METHOD

We adapt a noise suppression model developed in [17] to the task
of echo cancellation. Specifically, a recurrent neural network with
gated recurrent units takes concatenated log power spectral features
of the microphone signal and far end signal as input, and outputs a
spectral suppression mask. The STFT is computed based on 20 ms
frames with a hop size of 10 ms, and a 320-point discrete Fourier
transform. We use a stack of two GRU layers followed by a fully-
connected layer with a sigmoid activation function. The estimated
mask is point-wise multiplied with the magnitude spectrogram of
microphone signal to suppress the far end signal. Finally, to resyn-
thesize the enhanced signal, an inverse short-time Fourier transform
is used on the phase of the microphone signal and the estimated mag-
nitude spectrogram. We use a mean squared error loss between the
clean and enhanced magnitude spectrograms. The Adam optimizer
with a learning rate of 0.0003 is used to train the model.

5. ONLINE SUBJECTIVE EVALUATION FRAMEWORK

We have extended the open source P.808 Toolkit [18] with methods
for evaluating the echo impairments in subjective tests. We followed
the Third-party Listening Test B from ITU-T Rec. P.831 [19] and
ITU-T Rec. P.832 [20] and adapted them to our use case as well as
for the crowdsourcing approach based on the ITU-T Rec. P.808 [21]
guidance.

A third-party listening test differs from the typical listening-only
tests (according to the ITU-T Rec. P.800) in the way that listeners
hear the recordings from the center of the connection rather in for-
mer one in which the listener is positioned at one end of the connec-
tion [19]. Thus, the speech material should be recorded by having
this concept in mind. During the test session, we use different com-
binations of single- and multi-scale ACR ratings depending on the
speech sample under evaluation. We distinguish between single talk
and double talk scenarios. For the near end single talk, we ask for
the overall quality. For the far end single talk and double talk sce-
nario, we ask for an echo annoyance and for impairments of other
degradations in two separate questions4. Both impairments are rated
on the degradation category scale (from 1:Very annoying, to 5: Im-
perceptible). The impairments scales leads to a Degradation Mean
Opinion Scores (DMOS).

For the far end single talk scenario, we evaluate the second half
of each clip, to avoid initial degradations from microphone initial-
ization and initial delay estimation. For double talk scenario, we
evaluate the final third of the audio clip.

4Question 1: How would you judge the degradation from the echo? Ques-
tion 2: How would you judge other degradations (noise, missing audio, dis-
tortions, cut-outs)?



Fig. 4. The audio processing pipeline used in the challenge.

Scenario PCC

Far end single talk echo DMOS 0.99
Double talk echo DMOS 0.98
Double talk other DMOS 0.98

Table 2. AECMOS Pearson rank correlation coefficient (PCC).

The audio pipeline used in the challenge is shown in Figure 4. In
the first stage (AGC1) a traditional automatic gain control is used to
target a speech level of -24 dBFS. The output of AGC1 is saved in the
test set. The next stage is an AEC, which participants will process
and upload to the challenge submission site. The next stage is a
traditional noise suppressor (DMOS < 0.1 improvement) to reduce
stationary noise. Finally, a second AGC is run to ensure the speech
level is still -24 dBFS.

The subjective test framework with AEC extension is available
at https://github.com/microsoft/P.808. A more detailed description
of the test framework and its validation is given in [22].

6. AZURE SERVICE OBJECTIVE METRIC

We have developed an objective perceptual speech quality metric
called AECMOS. It can be used to stack rank different AEC methods
based on Mean Opinion Score (MOS) estimates with high accuracy.
It is a neural network-based model that is trained using the ground
truth human ratings obtained using our online subjective evaluation
framework. The audio data used to train the AECMOS model is
gathered from the numerous subjective tests that we conducted in the
process of improving the quality of our AECs as well as the first AEC
challenge results. The performance of AECMOS is given in Table
2 compared with subjective human ratings on the AEC Challenge 1
blind test set using the 17 submitted models. We are still working
on making the model generalize better on the new challenge test set
using methods described in [23].

Sample code and details of the evaluation API can be found on
https://aka.ms/aec-challenge.

7. AEC CHALLENGE RULES AND SCHEDULE

7.1. Rules

This challenge is to benchmark the performance of both real-time
and non-real-time algorithms with a real (not simulated) test set. Par-
ticipants will evaluate their AEC on a test set and submit the results
(audio clips) for evaluation. The requirements for each AEC used
for submission are:

• For real-time track, the AEC must take less than the stride
time Ts (in ms) to process a frame of size T (in ms) on an Intel
Core i5 quad-core machine clocked at 2.4 GHz or equivalent
processors. For example, Ts = T/2 for 50% overlap between
frames. The total algorithmic latency allowed including the
frame size T , stride time Ts, and any look ahead must be
≤ 40ms. For example, for a real-time system that receives

20ms audio chunks, if you use a frame length of 20ms with
a stride of 10ms resulting in an algorithmic latency of 30ms,
then you satisfy the latency requirements. If you use a frame
size of 32ms with a stride of 16ms resulting in an algorithmic
latency of 48ms, then your method does not satisfy the latency
requirements as the total algorithmic latency exceeds 40ms. If
your frame size plus stride T1 = T + Ts is less than 40ms,
then you can use up to (40− T1)ms future information.

• For non-real-time track, there are no constraints on computa-
tion time. To infer the current frame i (in ms), the algorithm
can access any number of past frames but only 40ms of future
frames(i+40ms).

• The AEC can be a deep model, a traditional signal process-
ing algorithm, or a mix of the two. There are no restrictions
on the AEC aside from the run time and algorithmic latency
described above.

• Submissions must follow instructions on https://aka.ms/
aec-challenge.

• Winners will be picked based on the subjective echo MOS
evaluated on the blind test set using ITU-T P.808/P.831 frame-
work described in Section 5.

• The blind test set will be made available to the participants
on March 15, 2021. Participants must send the results (au-
dio clips) achieved by their developed models to the organiz-
ers. We will use the submitted clips to conduct ITU-T P.808
subjective evaluation and pick the winners based on the re-
sults. Participants are forbidden from using the blind test set
to retrain or tune their models. Participants must submit re-
sults only if they intend to submit a paper to INTERSPEECH
2021. Failing to adhere to these rules will lead to disqualifi-
cation from the challenge.

• Participants must report the computational complexity of
their model in terms of the number of operations per second
= number of operations per frame / frame shift in seconds. For
the real-time track the frame computational time must also be
reported on an Intel Core i5 quad-core machine clocked at 2.4
GHz or equivalent processors. For the real-time track, among
the submitted proposals differing by less than 0.1 MOS, the
lower complexity model will be given a higher ranking.

• Each participating team must submit an INTERSPEECH pa-
per that summarizes the research efforts and provide all the
details to ensure reproducibility. Authors may choose to re-
port additional objective/subjective metrics in their paper.

• Submitted papers will undergo the standard peer-review pro-
cess of INTERSPEECH 2021. The paper needs to be ac-
cepted to the conference for the participants to be eligible for
the challenge.

7.2. Timeline

• January 8, 2021: Release of the datasets.

• March 8, 2021: Blind test set released to participants.

• March 15, 2021: Deadline for participants to submit their
results for objective and P.808 subjective evaluation on the
blind test set.

• March 22, 2021: Organizers will notify the participants
about the results.

• March 22, 2021: Regular paper submission deadline for IN-
TERSPEECH 2022.

https://github.com/microsoft/P.808
https://aka.ms/aec-challenge
https://aka.ms/aec-challenge
https://aka.ms/aec-challenge


• June 2, 2021: Paper acceptance/rejection notification.

• June 4, 2021: Notification of the winners.

7.3. Registration and Support

Registration for the challenge is done at https://aka.ms/aec-challenge.
Participants may email organizers at aec challenge@microsoft.com
with any questions related to the challenge.

8. CONCLUSIONS

This is the second AEC challenge and we hope it is both fun and
educational for both the participants and the readers of the papers
and ideas it helps generate.
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